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ABSTRACT 
 

The barrier properties of membranes for permeability of gases such as O2, H2O, N2, and CO2 are 

important for many industrial processes, but there remains inadequate understanding of how to design 

new improved materials for selective permeability. Partly the problem originates in the difficulty to 

obtain accurate reproducible experimental data. Simulation methods using first principle predictions 

have also not been adequately tested. The present work is part of a program initiated at MSC Caltech 

to improve on the methods to calculate permeability properties of polymeric membranes by focusing 

first on how to calculate the sorption of molecules in a polymeric membrane. Results of molecular 

dynamics (MD) and Monte Carlo (MC) computer simulation on such polymeric systems as 

Polypropylene (PP), Polyvinyl alcohol (PVOH), Polyvinyldichloride (PVDC), Polyvinylchloride-

trifluoroethylene (PCTFE), and Polyethyleneterephtalate (PET) are discussed. Although oxygen and 

water solute molecules are of main interest, to validate the calculations against experimental results, 

the solubilities of nitrogen and carbon dioxide in molten polypropylene are examined. For this last case 

gas solubilities are calculated for temperatures ranging from 250K to 650K. The magnitudes of the 

calculated solubilities agree well with experimental results and the trends with temperature are 

predicted correctly.  

 

1 Introduction 
 

The adsorption of small molecules in 

polymeric matrices is of great scientific interest 

for applications ranging from catalysis, to 

separation technology, to development of new 

polymeric membranes with improved barrier 

properties. Of particular interest are polymer 

materials that serve as barriers with low 

permeability to gases, vapors, and liquids, 

especially those that reduce permeability to 

oxygen gas and water vapor. The large variety of 

existing polymeric membranes may exhibit 

barrier properties that are very different with 

respect to gas and water vapor [12]. Thus, the 

question that most naturally occurs is what 

makes a polymeric membrane a good barrier? 

To quantify and characterize the barrier 

properties of a polymer film or membrane, the 

most frequently measured and reported quantity 

is the permeability P, by definition written as:  
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This definition, mostly employed by 

experimentalists, corresponds to a gas permeant 

at two different pressures on opposite sides of “a 

mm thick” membrane1. A molecular 

representation corresponding to this definition 

would result in an extremely large system for 

which permeability calculations are 

computationally expensive, if feasible at all. 

Alternatively, the permeability of a 

polymeric membrane is defined as the product 

between the diffusion coefficient, D, and the 

solubility coefficient, S, of the penetrant in the 

bulk polymer: 

. P SD=      (2) 

The corresponding SI units are cm2s-1 for the 

diffusion coefficient and cm3 of gas at STP per 

volume of polymer (cm3) and gas pressure (Pa) 

for the solubility. 

Thus, for molecular simulations the 

permeability may be determined by separately 

calculating the diffusion (D) and solubility (S) 

coefficients for the bulk polymer under periodic 

boundary conditions without explicitly 

considering the membrane thickness. 

It is known [2] that the diffusion coefficient 

and the solubility of a gas depend on various 

parameters characterizing the polymeric 

membrane (chemical structure and morphology), 

on the physical interactions between the 

penetrant and barrier material (hydrogen bonds, 

                                                 
1 A similar expression of permeability can be derived for 
the permeant being a liquid. 

polar group interactions) and on environmental 

parameters (temperature, pressure, relative 

humidity). However, the key scientific interest is 

to study how the permeability of a certain 

membrane is related to its structural 

characteristics and to the solute-polymer 

interactions. 

A program has been initiated at MSC, 

Caltech to improve on the methods to estimate 

permeability properties of polymeric membranes. 

This method is built upon Molecular Dynamics 

(MD) simulations [1] of solute molecules 

diffusing through a bulk polymer to obtain 

parameters (especially a time scale) for a Monte 

Carlo (MC) simulation of the diffusion 

coefficient. The calculated values of the 

diffusion coefficients and solubilities are then 

inserted in Eq. 2 to estimate the corresponding 

permeabilities that are further compared to 

available experimental data.  

Figure 1: Experimental permeabilities for water vapor 
and oxygen for various polymeric membranes [12].
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As part of this program, a combined 

molecular dynamics (MD) and Monte Carlo 

(MC) methodology described in the present 

paper is used to calculate solubility properties of 

polymeric membranes. Although in the present 

study solubility properties are calculated mainly 

for oxygen and water, this method could be 

applied as well for a variety of other solutes.  

After a brief introduction, section 2 describes 

the methods employed to generate and refine 

atomistic structures of various amorphous 

polymers. Section 3 discusses a Monte Carlo 

method to estimate Henry’s constant, equivalent 

to the Grand Canonical method. The precision of 

the method with respect to various parameters in 

the numerical calculations is investigated. The 

selected method to calculate Henry’s constant is 

validated by comparing the calculated 

solubilities of nitrogen and carbon dioxide in 

polypropylene with experimental results (section 

4) for a range of temperatures. Section 5 

discusses the results of the calculations of 

solubilities for oxygen and water in various 

selected polymeric systems. 

 

2 Polymer models 
 

Figure 1 summarizes experimentally 

determined permeability values with respect to 

water vapor and oxygen for a set of 14 polymers. 

For both permeants, these values range over 

several orders of magnitude. Also, membranes 

that are permeable to oxygen seem to oppose less 

water permeation and vice versa. For example, 

polyvinyl alcohol (PVOH) is very good in 

impeding oxygen but does not block water 

passage while polypropylene (PP) exhibits the 

contrary. On the other hand, polyvinylidene 

chloride (PVDC) is a good barrier for both 

oxygen and water vapor while polyethylene 

terephtalate (PET) has average barrier properties 

for these solutes [12]. For modeling purposes, 

five polymers out of this set were selected on the 

basis of being most representative: polyvinyl 

alcohol (PVOH), polyvinyl dichloride (PVDC), 

polyvinyl chloride trifluoro-ethylene (PCTFE), 

polypropylene (PP) and polyethylene 

terephtalate (PET). The chemical structures of 

these five polymers are shown in Figure 2.  

The Cerius2 (Accelrys Inc.) amorphous 

builder module was used to build n = 10 samples 

for each polymer with a unit cell containing four 

independent molecular chains, each with degree 

of polymerization D.P. = 20. For the PET sample 

a D. P. of 5 was used2. Also an additional set of 

n=100 samples was built.  

The amorphous builder module requires as 

input the Rotational Isomeric State (RIS) table 

that contains information on the conditional 

probability of key dihedral angles in the chain. 

                                                 
2 As for PET the number of atoms in the polymeric chain 
is larger than that of the other polymers, a 5mer instead of 
a 20mer, having the same number of atoms as the 20mers 
of  PP, PCTFE, PVDC, PVOH was constructed. Due to the 
presence of chiral centers, for PP and PCTFE syndiotactic 
samples were built. 
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The RIS table was determined for each polymer 

sample (see appendix) by separately minimizing 

the energy of each representative torsion, with 

coupling where applicable. The use of the RIS 

table within this building procedure ensures that 

polymer samples with nearly optimized 

geometries are produced, with the proper 

conformational statistics. The bulk polymer 

samples are generated initially at low density and 

are modeled in an infinite periodic unit cell. 

The charges on the polymers are from 

electrostatic potential fits (ESP) to Hartree Fock 

quantum mechanics determined charges using 

the 6-31G** basis set. The atomic charges from 

topologically equivalent atoms were then 

averaged out. The QM calculations were 

performed for the polymers trimers rather than 

monomers to reduce end effects. Furthermore, 

the charges for the terminal atoms were modified 

to ensure a zero net charge for the monomer.  

The RIS tables and QM determined charges 

for each of the five polymers selected for the 

present study are summarized in the Appendix. 

For the MD runs, two versions of the 

Dreiding [8] force field were used, one for non-

periodic vacuum calculations (file dreidii-exp6-

direct.par) and the second for condensed phase 

periodic systems (dreidii-exp6-ewald.par). 

For each of the n samples generated for each 

polymer, the equilibrium unit cell volumes and 

densities are obtained by a series of 

compression/expansion and heating/cooling 

cycles according to the procedure described 

below.  

1. The polymer sample is built in a cubic 

cell with a target density of 40% of the 

expected density, ρexp (usually chosen as 

the experimental value) using the RIS 

MC technique described above.  

2. The structure is energy minimized 

holding the unit cell parameters fix.  

 

(a) PET

(b) PVOH 

(c) PVDC

(d) PP 

(e) PCTFE 

Figure 2: Chemical structures of studied polymers.
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Table 1. Summary of information from the anneal dynamics cycle: Degree of Polymerization (D.P.), cohesive-energy 
density (CED), solubility, volume, end-to-end distance, radius of gyration, and energy per mol of monomer for the 
investigated polymer samples. The average density values are listed in Table 2 together with experimental values. The 
experimental range for the solubility parameter is also given in this table [4, 16]. The number of samples (n) is 10 or 100 
for the case of PET.  

 
 

3. At each density the structure is again 

energy minimized for 500 steps followed 

by 0.5 ps of NVT MD at 500K. 

4. The system is compressed in four steps 

(0.6, 0.8, 1.0, 1.2 ρexp) to achieve a final 

density of 1.2 ρexp.  

5. The system is allowed to relax (expand) 

to a final density ρexp in four steps (1.15, 

1.1, 1.05, 1.0 ρexp). 

6. At each density, the structure is energy 

minimized for 500 steps followed by 0.5 

ps of NVT MD at 500K.  

7. The final structure resulting from step 6 

is energy minimized for 500 steps and 

equilibrated using NPT MD for 10 ps at 

298K. This leads finally to a relaxed state 

with density close to ρexp. 

Polymer (n) D.P. CED Solubility parameter Volume Rend-end Rg Eb 

(cal/cc)1/2 - - cal/cc 

Calculated Experimental 

Å3/UC Å Å 
(kcal/mol of 
monomer) 

PET (10) 20 (-142.62±10.71) (11.93±0.45) [9.7-10.7] (5076.21±92.26) (14.90±0.84) (7.04±0.39) (-21.8±2.3) 
PET(100) 20 (-151.49±11.40) (12.3±0.46) [9.7-10.7] (5028.11±124.00) (14.93±1.97) (7.02±0.36) (-22.9±0.7) 
PVOH (10) 80 (-262.75±16.38) (16.20±0.51) [12.7-14.2] (4856.83±89.12) (25.2±3.49) (9.52±0.61) (-73.4±0.3) 
PVDC (10) 80 (-71.47±10.07) (8.44±0.59) [9.3-10.8] (8558.86±293.06) (13.83±2.88) (7.25±0.56) (-2.1±0.2) 
PCTFE (10) 80 (-46.14±5.47) (6.78±0.40) [7.2-7.9] (8658.64±334.90) (17.65±2.53) (7.91±0.48) (-13.3±0.3) 
PP (10) 80 (-48.00±5.04) (6.91±0.36) [7.7-9.4] (6896.35±188.66) (14.29±2.29) (6.96±0.37) (-107.8±0.2) 

Figure 3. Anneal dynamics protocol schematized for the PET sample. The target density is the experimental
density for amorphous PET, ρexp=1.3 g/cc. The low-density state corresponds to 0.4ρexp, the compressed state to
0.8ρexp and the high-density state to 1.2ρexp.  
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At the end of the anneal dynamics cycle, 

several physical and chemical properties 

(density, solubility parameters, end-to-end 

distance, and radius of gyration) are calculated as 

averages over the number n of generated 

samples. The cohesive energy density (CED) is 

also calculated during this cycle as the difference 

between the total energy of the bulk system (all 

terms in the energy expression) and the sum of 

the gas phase energies for each of the four 

polymer strands composing the unit cell divided 

by the volume of the unit cell. The Hildebrand 

solubility parameters are calculated using the 

standard definition [13]. The above procedure to 

generate polymeric samples will be further 

referred as the CED procedure and it is in more 

detail described elsewhere [13]. 

The average values and the standard 

deviations reported in Table 1 for the five 

investigated polymers are calculated at the 95% 

confidence limit (2σ on each side of the 

average). The last column in Table 1 is the total 

energy per monomer unit averaged over the 10 

ps NPT dynamics at 298K (step 7) by sampling 

every 0.5 ps. 

To determine whether the sample set of n=10 

is statistically adequate, the CED procedure is 

repeated to generate an additional set of n=100 

PET samples. Three types of energies are 

calculated and compared for the two sets of PET 

samples: 

• The CED per monomer, CED (cal/cc), by 

dividing the values of the CED (Table 1) 

with the D.P. value (Figure 4a).  

Figure 4a. Probability distribution of the cohesive
energy density per monomer (the CED values from
Table 1 are divided by the D.P.) for the PET polymer
for two sets of samples, n=10 and n=100. The
Boltzmann averages are –7.5 cal/cc and –8.1 cal/cc,
respectively. 

Figure 4b. Probability distribution of the cohesive
energy per monomer (the CED values from Table 1 are
multiplied by the volume of each sample and divided by
the D.P.) for the PET polymer for two sets of samples,
n=10 and n=100. The Boltzmann averages are –22.4
kcal/mol and –25.3 kcal/mol, respectively. 
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• The energy per monomer, Eced (kcal/mol), 

by multiplying the values of the CED 

with the volumes of each sample and 

dividing by the D.P. (Figure 4b). 

• The energy per monomer, E (kcal/mol), 

by calculating the final total single point 

energy of each minimized sample and 

dividing the value by the D.P. (Figure 

4c). 

The probability distributions of these 

energies for the n=10 and n=100 sets are shown 

in Figures 4a-4c and the average and standard 

deviations summarized in Table 2. 

Additionally, the Boltzmann average is also 

calculated from: 

.
exp

exp*
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The Boltzmann averages calculated for the 

cohesive energy density values (per monomer) 

for the two sample sets have relatively close 

values, –7.5 cal/cc (n=10) and –8.1 cal/cc 

(n=100). A somewhat larger difference is 

observed when comparing the Boltzmann 

averages calculated for the Eced data; the –22.4 

kcal/mol value for the n=10 set being less 

negative than the –25.3 kcal/mol value for the 

n=100 set. These values, correlated with the 

probability distributions in Figure 4a and Figure 

4b, suggest that by generating a smaller set of 

samples (n=10 versus n=100) the sampling may 

be biased towards configurations with higher 

energies. When the two sets of PET samples 

generated with the CED procedure are 

additionally minimized, the Boltzmann averages 

calculated for the final total minimized energies, 

E, agree very well, 44.8 kcal/mol (n=10) versus 

44.6 kcal/mol (n=100). Also the probability 

distribution for these energies seems to indicate 

that the sampled configurations in the small set 

(n=10) can be considered representative of the 

larger (n=100) set.  

 
Table 2. Average and standard deviation of energy 

values for PET for the n=10 and n=100 sets of samples. 

No. 
PET CED Eced E 

 cal/cc kcal/mol kcal/mol 
10 (-7.1±0.5) (-20.9±1.3) (45.2±0.5) 
100 (-7.6±0.6) (-22.9±1.4) (45.4±0.7) 
 

The accuracy with which the sample mean 

estimates the population mean is given by the 

standard error, which is typically calculated as 

the sample standard deviation divided by the 

square root of the number of points in the sample 

less one. When comparing average and standard 

deviation values for the three types of calculated 

energies and for the two sets of PET samples 

(Table 2), the variation lays within 10%, value 

that can be considered a reasonable threshold.  

Thus the n=10 set seems to provide a 

sufficiently accurate representation of the 

distribution obtained with the larger n=100 set 

by preserving key properties of the polymer 

samples. Consequently, for the other polymers 
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selected for our permeability study (PP, PVDC, 

PVOH, PCTFE) the sample generation via the 

CED procedure was limited to the n=10 set. 

However, for the purpose of solubility 

calculations one sample out of the generated 

n=10 set is selected based on the criterion that it 

should best represent the average density and 

CED of the ten samples. For this “average” 

sample an additional 150 ps of NPT dynamics 

(constant number of particles, pressure and 

temperature) at a temperature of 298K and 

pressure of 1 atm = 1.0132*10-4 GPa is run. 

During the NPT dynamics the Nose-Hoover 

thermostat and the Parrinello-Rahman barostat 

are used. The equilibrated part (last 100 ps) of 

the NPT-MD generated trajectories is further 

used for solubility calculations.  

Table 3 shows the experimental densities 

reported for the amorphous polymers [4], ρexp, 

the annealing densities (averaged over the 

dynamics at 298K for all n samples), ρanneal, and 

the minimized density (from all n samples), ρmin. 

For comparison, the densities corresponding to 

the lowest cohesive energy density, ρCED, and the 

average density from the NPT dynamics, ρNPT, 

for the single selected sample from the n cases 

are also indicated. 

These values show that the CED 

procedure leads to densities that are too low by ~ 

6% to 15% when experimental densities (ρexp) 

are compared to the average over all n generated 

samples (ρanneal). The densities of the lowest 

CED sample (ρCED) are smaller by only 2% to 9 

% compared to the experimental values. 

 

Table 3. Comparison of experimental densities, ρexp, [4, 
16] with the densities from annealing, ρanneal, additional 
minimization, ρmin, the density corresponding to the 
lowest CED sample, ρCED, and one-sample NPT 
dynamics-average, ρNPT. 
Polymer ρexp ρanneal ρmin ρlCED ρNPT  
 g/cc g/cc g/cc g/cc g/cc 
PET10 1.34 (1.26±0.02) (1.31±0.02) 1.29 (1.29±0.03) 
PET100 1.34 (1.27±0.03) (1.32±0.03) 1.31 n.a. 
PVOH 1.29 (1.21±0.02) (1.21±0.03) 1.25 (1.24±0.03) 
PVDC 1.66 (1.51±0.05) (1.57±0.03) 1.62 (1.64±0.03) 
PCTFE 2.1 (1.79±0.07) (1.79±0.07) 1.90 (1.77±0.05) 
PP 0.86 (0.81±0.03) (0.82±0.02) 0.86 (0.76±0.03) 

 
In general, an underestimate in the 

densities of the samples generated for MD is to 

be expected as industrial grade polymers 

typically have D.P. well over 1,000, much larger 

than the low molecular weights polymers (D.P 

20) modeled in this study. Long chains are 

however impractical to model due to the long 

simulation time scales one would require.  

Figure 4c. Probability distribution of the single
point energy per mol of monomer (D.P.) for the PET
polymer for two sets of samples: n= 10 and n=100. The
Boltzmann averages are 44.8 kcal/mol and 44.6
kcal/mol, respectively. 
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3 Methodology to calculate 
solubility constants 

 

Solubility represents the ability of a 

substance to dissolve into another. Its value 

expresses the maximum amount of solute that 

will dissolve in a given amount of solvent. For 

gases in polymers, the solubility S describes the 

concentration C of the gas inside a polymer at 

equilibrium with the gas at partial pressure p and 

is described by the dual-mode theory [18]: 

bp
bpCpkC H +

+= ∞ 1
   (4) 

This equation accounts for two distinct 

mechanisms of sorption: the first term 

corresponds to Henry’s law, proportional to p, 

while the second term represents a Langmuir-

type isotherm with c∞ the saturation 

concentration of the gas and b the ratio of gas 

molecules absorption/desorption rates.  

For ideal dilute solutions (real solutions at 

low concentrations), the case of gases in rubbery 

polymers, one may ignore the Langmuir part in 

Eq. 4. For such rubbery polymers, Henry’s law is 

obeyed up to pressures of several hundred 

atmospheres [14, 18]. The relation between 

solubility and Henry’s constant (expressed in 

standard units of Pa-1) can be derived by 

assuming that the gas exhibits ideal-gas behavior 

both at STP conditions (T0=273.15 K, p0=1 atm) 

and at the temperature T of the measurements 

(i.e. V/V(STP)=T/273.15 K): 

K
TkS H 15.273

=     (5) 

In computer simulations, Henry’s constant is 

usually calculated via Monte Carlo statistical 

mechanics methods [3,6]. There are two 

equivalent modalities to perform such 

calculations. The first requires the evaluation of 

the simulation-cell loading at several fixed 

pressure (grand canonical ensemble). Henry’s 

constant, Hk , is then calculated as the 

simulation-cell loading, C divided by the sorbate 

pressure, p in the limit of zero pressure: 

p
Ck

pH 0
lim

→
=      (6) 

Bezus [7] proved that Henry’s constant may be 

computed from configuration integrals 

corresponding to different positions r and 

orientations Θ of the solute molecule inside the 

cavities of the polymer matrix: 

Tk
rU

d

cell
TkH

B
B

drk
),(

8
1 exp2

Θ−
Θ∫∫=

π   (7) 

In practice, these cavities are partitioned into 

small cells and the energies of interaction, 

U(r,Θ) are calculated at the centers of these cells. 

It is assumed that at any point inside a given cell 

the corresponding contribution to the total 

energy of interaction is equal to the value 

calculated for the center of the cell. Thus the 

integral in Equation 7 becomes the finite sum: 
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1
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with cellV  the volume of the unit cell and N the 

adjustable number of steps in the simulation. The 

positions (ri) and orientations (Θi) are chosen at 

random [7]. This procedure is implemented in 

Cerius2 (Accelrys Inc.) under the choice of 

Henry’s constant ensemble [5] and requires as 

input the model of the polymer framework and a 

model of the sorbate molecule of interest. The 

program will then generate N random, positions 

and orientations for the sorbate molecule. For all 

accepted configurations the solute-matrix and the 

solute-solute (images) interaction energies are 

calculated and added to the sum in Equation 7. 

Henry’s constant is returned at the end of the 

calculation in units of molecules/unit cell/kPa. 

Throughout this paper we will report the values 

of Henry’s constant in cm3(STP)cm-3atm-1, since 

the experimental data are usually expressed in 

terms of volume of gas at standard temperature 

and pressure (STP) adsorbed in a certain volume 

of polymeric material at the pressure of interest, 

p. 

Accepted configurations depend upon a bad 

contact fraction parameter set by the user. Before 

performing an energy calculation, the program 

checks for bad contacts to identify and reject 

such high-energy configurations (that would give 

negligible contributions to the sum) to save 

calculation time. A bad contact occurs when two 

atoms approach within a defined fraction f of the 

sum of their van der Waals radii. In the present 

calculations, a value of 0.5 is chosen for this 

fraction. 

Figure 5 shows the variation of the solubility 

coefficient (Henry’s constant) as a function of 

the bad contact fraction f calculated for one 

frame of the PET sample. If the value of f is too 

large, many bad contacts will be found, the 

calculation will be fast but inaccurate. On the 

other hand, if f is too small, too many high-

energy configurations are accepted, slowing 

Figure 5. Henry’s constant, kH, versus the bad
contact fraction, f. A bad contact fraction occurs
when two atoms approach within a defined fraction
f of the sum of their van der Waals radii. 

Figure 6. Calculated values for Henry’s constant, kH,
as function of the number of terms, N, in the sum of
Equation 8. All kH values are normalized to the
converged value obtained for N=5millions iterations. 
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down the calculation without correspondingly 

increasing the accuracy. 

Another adjustable setting in the numerical 

calculation of Henry’s constant is the number of 

iterations N (the number of terms in the sum of 

Equation 8). Calculations were carried out for 

the PET, PP, PCTFE, PVDC polymer samples to 

check how the precision in Henry’s constant 

determination depends on the number of 

iterations, N. N was varied from 150,000 to 5⋅106 

steps; for each N, the values of kH was 

normalized to the kH value calculated for 

N=5⋅106. Figure 6 shows that N=1.5⋅106 steps is 

sufficient to obtain a well-converged value of kH 

(within 4%) while also convenient from the point 

of view of computational time (that in principle 

scales with N). If not otherwise specified, we 

used the value of 1.5⋅106 steps for N throughout 

this paper. 

Usually, Henry’s constant calculations 

are performed on rigid frameworks (zeolites, 

alumino-phosphates, etc.) with micro porous 

structure that does not change significantly 

during dynamics simulations. However, for 

polymeric systems it was observed that the 

dynamics of the polymer matrix introduces 

important structural modifications (distribution 

of voids and channels, destruction of existing 

voids and generation of new ones). Because the 

existing free volume and its distribution inside 

the host matrix influences both diffusion and 

sorption, Henry’s constant is calculated as the 

average over a selected number of frames (every 

0.5 ps) in the equilibrated part (usually 50-

150ps) of each MD trajectory. For statistical 

purposes, a confidence interval rather than an 

average value is calculated for Henry’s constant 

according to a two-tailed test and a 95% 

confidence level: 

 

n
stx

n
stx nn 1,1, −− +≤<− αα µ    (9) 

 

Figure 7. Concentration versus pressure calculation (Grand Canonical ensemble) for the PET sample with H2O
(left) and O2 (rigth). Equation 4 is then fit through the data points (Langmuir and linear). The calculated fit
parameters are kH =1.16*10-4, b=0.99, c∞=1.74*10-7 for water and kH =2.35*10-4, b=0.05, c∞=0.05 for oxygen. 
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In Eq. 9, 1, −ntα  is the value of the standard 

normal variable that puts α/2 percent in each tail 

of the distribution, µ is the population mean, n 

the sample size, x the sample mean and 
n
s  the 

standard error for x . This procedure is further 

referred to as the “Henry’s constant ensemble” 

method. 

The Dreiding force field [8] was used to 

evaluate the energy expression in the Henry’s 

constant ensemble calculations. 

Table 4. Values of kH (molecules/cell/kPa) calculated 
from the Grand Canonical (GC) and Henry’s constant 
(HC) ensembles. Equation 4 was used to fit the 
concentration versus pressure data via a Langmuir 
(both terms) or linear (first term only) expression. The 
R2 values for the fit of the GC ensemble data are 0.96 
for oxygen and 1 for water. Eq. 8 was used for the HC 
calculations. 

PET GC 

       kH            c∞                b 

HC 

kH 

+O2 

-Langmuir 

-Linear 

 

2.35*10-4 

2.35*10-4 

 

0.05 

0 

 

0.05 

0 

 

 

2.9*10-4 

+H2O 

-Langmuir 

-Linear 

 

1.16*10-4 

1.16*10-4 

 

0 

0 

 

0.99 

0 

 

 

1.0*10-4 

 

This Cerius2 (Accelrys Inc.) procedure 

employs the minimum image convention to 

calculate the van der Waals component of the 

energy and the Ewald summation method for the 

Coulomb interactions. However, the latter can be 

turned off for cases when the solute molecule is 

not charged (e.g., oxygen, nitrogen) to save 

computation time. The default non-bond cut-off 

is initially 8.5Å and is automatically optimized 

during the calculation to ensure solution 

consistency [5]. 

Agreement of the kH predictions given by the 

Grand Canonical (Eq. 4) and Henry’s constant 

(Eq. 8) ensembles was checked. Via the GC 

ensemble, the solute concentration (cell load) for 

oxygen and water was calculated for the PET 

matrix for a range of pressures between 0.01 atm 

and 10 atm (Figure 7). Equation 4 was then fit 

through the data points to obtain kH in the limit 

of zero pressure. The calculated Langmuir 

parameters, b and c∞ are both essentially zero 

(Table 4). The GC ensemble fit values of kH are 

compared with the results from Henry’s constant 

(HC) ensemble in Table 4. 

The kH values calculated with the two 

ensembles agree within 20%. Since the 

experimental data do not agree better than 10% 

and since the Henry’s constant ensemble 

calculation is about 10 times faster than GC, we 

chose to use the Henry’s constant ensemble for 

all our further calculations. 

The precision of the kH procedure was also 

tested by repeating (three times) the calculation 

for exactly the same configuration of each of the 

polymers. The results show that all the calculated 

values are repeatable within 5%. 
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4 Validation 
 

Accurate experimental values for solubilities 

in polymeric systems are quite rare in literature, 

especially at elevated pressures and 

temperatures. The present study is validated by 

comparing with data from other literature studies 

(experimental and calculations) Henry’s constant 

temperature dependence of nitrogen (N2) and 

carbon dioxide (CO2) in polypropylene (PP). The 

temperature dependence of some of the 

polymer’s matrix properties (compressibility, 

bulk modulus and thermal expansion) as 

calculated from MD simulations are first tested.  

 

4.1 Compressibility and thermal 
expansion coefficients 

 
The MD average of the total, occupiable 

and available volume (calculated in Cerius2) 

shows a linear increase with temperature (Figure 

8). However, both graphs exhibit a discontinuity 

between 450 K and 550 K approximately 

corresponding to the melting regime of PP.  

Additionally, Figure 9 shows the 

temperature variation of the (syndiotactic) PP 

density. Experimental densities are available for 

isotactic PP for temperatures below melting, 

between 300 K and 473 K [15]. The agreement 

between calculated and experimental densities is 

again better for temperatures above the melting 

point. 

From the temperature dependence of the 

average volume/density, a value of 577 K is 

predicted from our calculations as the melting 

temperature of PP. This value is determined from 

the equality of the linear fits of the data points 

below and above 500 K (Figure 8). 

The isothermal compressibility, α (GPa-1), is 

calculated from the volume fluctuations during 

MD according to: 

Figure 8: Temperature dependence of the MD-
averaged unit cell total volume of PP. The inset
represents the temperature dependence of the
occupiable and accessible volumes.  

Figure 9: Temperature variation of PP density from
MD simulations (squares). For comparison,
experimental data (diamonds) are also shown [15]. 
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TkV

VV

B

22 −
=α     (11) 

with <> the notation for ensemble averaging, V 

the total unit cell volume, kB Boltzmann’s 

constant (=1.38·10-23 JK-1) and T (K) the 

absolute temperature. By definition, the bulk 

modulus, β (GPa), is calculated as the inverse of 

the isothermal compressibility, α. 

The thermal expansion coefficient, αT (K-1), 

is calculated at each temperature from the linear 

fit of the volume versus temperature as the slope 

of V (T) divided by the average MD volume 

corresponding to temperature T.  

Experimental compressibility data is 

available for melted PP. Table 5 shows that for 

temperatures between 450K and 550K the 

isothermal compressibility values calculated in 

the present study follow the same trend as the 

experimental data although underestimated by 

about 15-30%. 

Experimental values for the thermal 

expansion coefficient are available for a broad 

range of temperatures whereas compressibility 

data is available only for melted PP. The 

variation of the thermal expansion coefficient 

with temperature is shown in Figure 11. The 

agreement is good for temperatures above 450K 

(above Tmelt, 10% high), but the predicted values 

(Table 6) are high by a factor of 8 near the glass 

temperature (280K). 

Table 5. Coefficient of isothermal compressibility, 
α(GPa-1), for PP. 

T(K) experiment [4] present study 
453 1.27 1.08(450K) 
493 1.5 1.16 (500K) 
533 1.78 1.29 (550K) 

 
Table 6. Coefficient of linear thermal expansion and of 
thermal expansion (melt), αT (K-1) for PP. 

T(K) experiment [4] present study 
243-273 6.5e-5  
273-303 1.1e-4 8.24e-4 
303-330 1.4e-4 8.09e-4 
448-573 6.6e-4 7.43e-4 to 6.81e-4 
453-503 6.7e-4  

 

Actually it is more accurate to describe the 

melting of a polymer as a process that takes 

place over a range of temperatures, depending on 

many factors (i.e., molecular weight, chain 

Figure 10: Temperature variation of
compressibility, α, and bulk modulus, β, for
PP. 

Figure 11: Temperature variation of the thermal
expansion coefficient, αT, of PP. 
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stiffness, degree of branching, etc.). The data 

points in Figure 8 - Figure 11 indicate that the PP 

melting process starts somewhere between 400 K 

and 450 K and is completed around 550 K.  

Depending on the extrapolation technique 

used to calculate melting temperatures from 

experimental data a range between 415K and 477 

K was determined for syndiotactic PP for the 

equilibrium melting temperature [17]. The 477 K 

value corresponds to 100% syndiotactic PP. For 

comparison, for isotactic PP the melting 

temperature ranges from 398 K to 439 K. 

The values predicted in the present study are 

in good agreement with the experimental ranges 

considering that our modeled polymer has a 

lower molecular weight (At relatively low 

molecular weights it was observed that 

increasing the mass or chain length results in 

raising the melting temperature). 

 

4.2 Mass cell pre-factor coefficient 
 

In the Rahman-Parrinello approach (the 

barostat used in the NPT calculations to preserve 

constant pressure in the system) a user-defined 

mass-like parameter corresponding to the volume 

dynamical variable is used to calculate the 

kinetic energy of the cell. This represents 

actually the piston mass and is considered in the 

dynamics as a mass cell pre-factor (MCPF) 

controlling the heat flow rate. A value of 1 for 

MCPF was used so far in our calculations. 

Generally this value should be chosen such that 

the fluctuations in the volume are much slower 

than in the temperature. In addition the volume 

properties should be calculated over a large 

number (~20) of these long-term fluctuations.  

To verify the influence of the MCPF on the 

dynamics and the calculated kH values, additional 

100 ps of NPT dynamics at 300K were run with 

values of the mass cell pre-factor of 5 and 10, 

Figure 13. Dependence of compressibility and
bulk modulus on the value (1, 5 and 10) of the
cell mass pre-factor (MCPF) set in the NPT
dynamics calculation at 300K for PP 

Figure 12. Time variation of unit cell volume for
PP at 300K as function of the MCPF used in
dynamics (150 ps NPT).  



 16

respectively. Figure 12 shows the time variation 

during dynamics of the total unit cell volume for 

the three values of the MCPF. With increasing 

piston mass (larger MCPF values), the volume 

space is less explored and the volume 

fluctuations decrease in amplitude and 

periodicity. Too small values selected for MCPF 

result in fast motion of the cell vectors but could 

induce artificial periodic motions of the cell and 

may not allow enough time for equilibration. 

Larger values of MCPF mean a heavy, slow 

fluctuating cell (for infinite value of MCPF 

constant-volume dynamics should be obtained) 

thus, requiring longer dynamics runs. Here it 

appears that the 100 ps of sampling is sufficient 

for MCPF=1 and 5, but perhaps not for 

MCPF=10. 

Consistent with the volume fluctuations, the 

compressibility is also not well represented for 

large values of the MCPF (Figure 13). 

The time variation of kH calculated using the 

Henry’s constant ensemble from the NPT-MD 

simulations at 300K for each of the three values 

of MCPF (1, 5 and 10, respectively) is shown in 

Figure 14. The limits for a 95% confidence 

interval of kH and the average total unit cell 

volumes are summarized in Table 7. 

Both data in Figure 14 and Table 7 seem to 

indicate that it would be beneficial for the 

accuracy of the calculated kH values to allow a 

slower exploration of the volume (MCPF=10). 

Indeed, the time fluctuation and the limits of the 

confidence interval calculated for kH for 

MCPF=10 are smaller than for MCPF=5 and 

MCPF=1. However, by exploring less the 

volume space fewer polymer configurations are 

also sampled and representative contributions 

may be lost. Using a larger value for MCPF 

would mainly result in increasing the simulation 

time. 

 

Table 7. Confidence intervals of kH calculated for N2 in 
PP at 300K corresponding to three values of the mass 
cell pre-factor (MCPF) in the Rahman-Parrinello 
barostat. The averages of the total unit cell volume, V, 
over the MD simulation times, t, are also indicated. 

MCPF t (ps) V (Å3) kH (cc3/kg/MPa) 
1 200 6672±135 (838< kH ≤1590) 
5 100 6807±149 (879< kH ≤2010) 

10 100 6660±94 (99< kH ≤368) 
 

This analysis proves that the choice of a 

MCPF value of 1 is optimal from the point of 

view of exploration of the volume domain and 

the required simulation time.  

 

Figure 14. Time variation of Henry’s constant,
kH, calculated from NPT dynamics for PP at
300K using three values for the mass cell pre-
factor, MCPF, in the Rahman-Parrinello
barostat. 
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4.3 Temperature dependence of kH 
 

The study by Durrill & Griskey [9] contains 

data on measured solubilities and diffusivities of 

various gases in molten or thermally softened 

polymers. The experimental procedure involves 

saturation of the polymer matrix with the gas at 

low pressure. As a response to the initial quick 

increase in pressure, the solute starts permeating 

the polymer. The pressure drop rate is then 

recorded. From the pressure versus time curves, 

by repeating this procedure at various pressures, 

the gas solubilities/Henry’s constant were 

calculated. The precision of the experimental 

data claimed by the authors is about 8%. Table 8 

contains Henry’s constant values from this study 

determined at 461K. 

Using the Sanchez-Lacombe equation of 

state, Sato et al. [10] report the following linear 

relationship between Henry’s constant (kH) and 

temperature: 

with Tc(K) the critical temperature of the gas3 

and T(K) the actual temperature of the system. 

The Sanchez-Lacombe equation of state predicts 

the swelling of the polymer matrix in the 

presence of a gas/solute, given a certain pressure. 

                                                 
3 The critical temperatures for CO2 and N2 are 
304.1K and 126.2K, respectively [11]. 

The Sato et al. values in Table 8 are calculated 

from Eq.10 at T=461K. 

For PP a 453.2K MD trajectory was 

initially available and the confidence interval for 

kH was estimated for N2 and CO2 at this 

temperature using the Henry’s constant ensemble 

method (Table 8).  

With respect to the experimental data [9] 

the Sanchez Lacombe EOS overestimates the 

CO2 kH by 17-37% and underestimates that of N2 

by 20-30% being considered a good agreement 

[10]. The experimental data fall within the range 

predicted by the MD simulations. 

Table 8. Henry’s constants (cm3kg-1MPa-1) for CO2 and 
N2 in PP measured at 461K [9]. In the present study 
(MSC) the limits for kH corresponding to a 95% 
confidence interval are calculated from an MD 
trajectory at 453.2 K. From Sanchez-Lacombe type 
equations [10], kH at 461K and 453K are calculated. 

 kH (CO2) kH (N2) 

Durrill&Griskey [9] 

461K 

 

2250±180 

 

1310±110 

Sato et al. [10] 

461 K 

453 K 

 

2830 

2729 

 

971 

921 

MSC (453K) (1630< kH ≤2570) (737< kH ≤1063) 

 

The limits of the confidence interval of kH 

calculated from NPT-MD are determined by the 

dynamic fluctuations of the unit cell total volume 

(Figure 8) and the amount and distribution of 

void space (Figure 8, inset).  

However, for a more conclusive validation, 

NPT-MD trajectories for the PP matrix were 

calculated for a range of temperatures between 

( )10
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300 K and 650 K (steps of 50 K) to study the 

temperature dependence of kH of N2 and CO2 for 

this polymer. Henry’s constant, kH, was 

calculated using the ensemble method described 

in section 3 for frames every 2 ps along the 

equilibrated 100 ps MD trajectory. This 

temperature range covers both the glass 

transition temperature of PP (280K) and the 

melting temperature of 100% crystalline PP 

(~459K).  

Temperature influences both the dynamics of 

the polymer matrix and that of the solute. This 

leads to changes in the solute-polymer 

interactions and makes Henry’s constant 

temperature-dependent. To extract each of these 

effects separately and obtain their influence on 

the fluctuations of the system, two sets of 

calculations are performed. First, we considered 

the dynamics of the polymer matrix at 300 K and 

calculate Henry’s constant for the 300 K - 650K 

temperature range (the matrix is maintained at a 

constant temperature and only the solute is 

heated). Second we included the temperature 

dependence of the polymer dynamics (both 

polymer matrix and solute are heated 

simultaneously). According to Equation 7, the 

first case should lead to values of kH that scale 

inversely proportional with temperature as 

shown in Figure 15 while the behavior with time 

will be the same. Since the polymer dynamics is 

for 300 K, the temperature dependence of 

Henry’s constant includes only the variation with 

temperature of the interaction energies of the 

gas-polymer system. Both N2 and CO2 lead to 

the same trend (data for CO2 are not shown).  

By including the temperature dependence of 

the polymer matrix in the calculations of kH, two 

contributions to Eq. 7 will be affected: Vcell and 

U(r, Θ). 

Figure 15. Time fluctuations of Henry’s
constant over a dynamic trajectory for which
the PP is kept at 300K while the temperature of
the N2 molecules range from 300K and 650K.  

Figure 16. Time fluctuations of Henry’s constant of N2
for four temperatures where the dynamics of the
polymer (PP) matrix at that temperature was
considered.  



 19

Especially at temperatures close and above 

the melting temperature (Tmelt) of the polymer, 

the total unit cell volume exhibits larger 

fluctuations (Figure 8). The solute-polymer 

interaction energy, U(r, Θ), determined by the 

“chemistry” of the internal surface of the pores 

will also change as the polymer chains will have 

an increased chance to modify their 

configurations. The overall effect on the 

temperature dependence of Henry’s constant is 

thus including both these effects (Figure 16).  

Stern et al. [19] proposed to use a linear 

expression between kH (cc (STP)/kg MPa) and 

the reduced temperature t=(Tc/T)2 to correlate the 

data also used in the study by Sato et al. [10]. 

The critical temperatures, Tc, (304.1K for CO2 

and 126.2K for N2) are obtained from Reid et al. 

[11]. Eq. 10 was thus used to compare the kH 

values determined in the present study (denoted 

by MSC) for N2 and CO2 in PP (Figure 17), with 

existing literature studies [9, 10]. Sato’s data are 

calculated by extrapolating Eq. 10 for a range of 

temperatures between 250K and 650K (the 

corresponding range for the reduced temperature, 

t, is approximately 0.25 to 0.04 for N2 and 1.5 to 

0.21 for CO2). The value determined by Durrill 

& Griskey [9] at 461K is also added to Figure 17 

together with the additional calculation at 453K 

by MSC (also compared in Table 8). 

There is a clear discrepancy at low 

temperatures (large t) for nitrogen in PP between 

our calculations and Sato’s data. While our data 

show that there is a distinct minimum at a 

temperature of about 350K, Sato’s equation 

suggests a linear dependence. This is most 

probable related to the fact that in Sato’s 

experimental study the amount of data was not 

sufficient to obtain a definite temperature 

dependence of Henry’s constant. One study 

reported by Sato [10] suggests that usually the 

glass transition temperature for the polymer 

matrix is also the temperature of minimal 

Figure 17. Ln(kH) calculated in the present study (MSC) as function of the reduced temperature, t, for the case of N2
(left) and CO2 (right) in PP. A second order polynomial was fitted through the data points. Data from [19] using a
Sanchez Lacombe equation of state are plotted. Values from Table 5 are also added to the graph 
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solubility for noble gases. This behavior is based 

on measurements of a series of noble gases in 

poly(methylacrylate) and could be explained by 

the contribution to Henry’s constant from filling 

the voids in the polymer matrix. A comparable 

result is determined by Sato for N2 in 

poly(styrene). The glass transition temperature of 

isotactic poly(propylene) is 373K that 

corresponds to a reduced temperature of t=0.11. 

Both the overall trend for the temperature 

dependence of kH for N2 in PP and the 

temperature of minimal solubility predicted in 

this study are in very good agreement with the 

above suggested noble gas behavior.  

For carbon dioxide + PP the presence of a 

minimum is less pronounced and also occurs at 

higher temperatures (t=0.8) than for nitrogen. As 

suggested by Sato [10], there are two competing 

effects. At low temperatures the gas 

condensation dominates while at higher 

temperatures the solute-solvent mixing becomes 

important. As the critical temperature for CO2 is 

higher than for N2, the gas condensation is also 

more important. Over the same temperature 

range, Henry’s constants for carbon dioxide in 

PP are larger than those of nitrogen, the 

difference being (2-5 times larger at 

temperatures below the melting temperature of 

PP) decreasing with increasing temperature.  

Figure 17 shows that our calculations are 

consistent with Henry’s constant temperature 

dependence predicted in other literature studies. 

This consistency gives some confidence in the 

integrity of our calculations.  

 

5 Results and discussion 
 

The solubilities of oxygen and water vapor 

in PET, PVOH, PVDC and PP at a temperature 

of 300 K are summarized in Table 9 and Table 

10, respectively. Henry’s constant values are 

calculated according to the methodology 

described in section 3. Following the procedure 

described in section 2, the polymer samples are 

generated and selected for a 200 ps molecular 

dynamics trajectory. To be noted that the 

calculations for water vapor include electrostatic 

interactions whereas those for oxygen do not. 

 
Table 9. Solubility constants of oxygen in PVOH, PET, 
PP and PVDC (ordered from least to highest soluble). 
The interval of variation for Henry’s constant, kH, is 
calculated for a 95% confidence level.  

Polymer  ρexp kH kH 
- g/cc molec/cell-1/kPa-1 cm3/cm3/atm 
PVOH 1.29 (5.2<µ≤6.4)*1e-4 (0.41<µ≤0.50) 
PET  1.34 (6.2<µ≤9.2)*1e-4 (0.46<µ≤0.68) 
PP 0.86 (1.0<µ≤1.4)*1e-3 (0.53<µ≤0.74) 
PVDC 1.66 (1.7<µ≤2.1)*1e-3 (0.75<µ≤0.92) 
 
Table 10. Solubility constants for water vapor in PP, 
PVDC, PET and PVOH (ordered from least to highest 
soluble). The interval of variation for Henry’s constant, 
kH, is calculated for a 95% confidence level. 

Polymer  ρexp kH kH 
- g/cc molec/cell1/kPa1 cm3/cm3/atm 
PP 0.86 (2.4<µ≤4.2)*1e-4 (0.13<µ<0.22) 
PVDC 1.66 (1.4<µ≤2.2)*1e-2 (6.5<µ<10.2) 
PET 1.34 (1.3<µ≤2.9)*1e-1 (96<µ<214) 
PVOH 1.29 (0.3<µ≤1.3) (235<µ<1017) 

 

According to Figure 1, the most oxygen 

permeable membrane of the four investigated 
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here is PP followed by PET, PVOH and PVDC. 

Except for the case of PVDC, the hierarchy is 

preserved also from the solubility point of view 

(Table 9). The present calculations predict that 

PVDC is the highest oxygen soluble membrane 

of the investigated four. The oxygen solubilities 

of these four polymers differ only by a factor of 

2 while the difference in permeabilities is about 

four of orders of magnitude between the highest 

and least permeable.  

For water, the most permeable 

membrane is PVOH followed by PET, PP and 

PVDC (Figure 1). This hierarchy is again 

preserved also for the case of solubility except 

that PVDC is more soluble to water than PP. 

That PVOH has the highest solubility for water 

is most probable explained by the presence of 

hydrogen bonds between the terminal OH groups 

(Figure 2) and water molecules. Some hydrogen 

bonds may also be present in the case of PET 

between the backbone or side oxygen atoms and 

water molecules (Figure 2). Compared to the 

case of oxygen, water solubilities differ by a 

larger amount (four orders of magnitude) and so 

do the corresponding permeabilities. It may thus 

be that in the overall permeability properties of a 

membrane towards water solubility plays a more 

important role than for the case of oxygen.  

Other factors like polymer crystallinity, 

tacticity, orientation and cross-linking certainly 

influence the permeability properties of the 

formed membrane. For example, polymers 

characterized by a high degree of crystallinity 

normally exhibit lower permeabilities. Recently 

it has been shown experimentally that some 

clay/polymer composites may offer significantly 

reduced permeabilities over the individual 

polymer materials. This can be explained partly 

by the added tortuosity of the path that a gas 

molecule or atom must take to transverse the 

polymeric nanocomposite membrane due to the 

combination of crystalline and amorphous 

regions.  

 

Table 11. Average values of total volume, densities and 
Henry’s constant for the minimized polymer samples 
generated with the CED procedure. 

Polymer Vcell Density kH 

 Å3 g/cc molec/cell/kPa 

PCTFE (8658±335) (1.79±0.07) (1.0<µ≤1.9)*1e-3 

PP (6879±189) (0.81±0.02) (1.6<µ≤5.8)*1e-4 

PVOH (4857±89) (1.21±0.02) (0.1<µ≤4.9)*1e-4 

PVDC (8233±116) (1.56±0.02) (1.1<µ≤2.1)*1e-3 

PET (4888±88) (1.31±0.02) (0.1<µ≤4.8)*1e-4 

 

Although higher density polymers should 

in principle exhibit lower solubilities, the present 

study performed on low molecular weight 

samples does not seem to exhibit such a trend. 

For the four investigated samples, oxygen and 

water solubilities do not decrease with increasing 

density (Table 9-10). A similar result is obtained 

if Henry’s constants are calculated from CED 

generated samples (Table 11).  
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The confidence limits for MD-calculated 

Henry’s constants are relatively large. As 

discussed in section 4 for the validation case of 

nitrogen and carbon dioxide in PP, the source of 

these large fluctuations is caused by the thermal 

fluctuations in the polymer matrix (total volume 

of the unit cell) during the molecular dynamics 

run. Figure 12 shows such a variation for the PP 

sample and may be considered representative for 

the dynamics of all the polymers investigated in 

the present study. A second cause for the spikes 

observed in the temporal variations of Henry’s 

constant (Figure 15 and Figure 16) is the 

“chemistry” of the internal surface of the pores 

described by the solute-polymer interaction 

energy, U(r, Θ), which also changes whenever 

the polymer chains modify their configurations. 

Other factors, such as the presence of the 

polymer terminal ends and the duration of the 

MD simulation from which Henry’s constant is 

calculated, could also be a cause for the observed 

fluctuations. The effect of such factors on the 

limits of the confidence level of Henry’s constant 

in separately investigated below for the case of 

oxygen solubility.  

It is conceivable that the fluctuations in 

Henry’s constant might be related to some 

specific feature of the chemical structure of the 

investigated polymers. Thus systems like PP, 

PVOH and PVDC that do not contain aromatic 

rings explore probable more easily a larger 

number of conformations, allowing “bad 

configurations” to be eliminated during the 

dynamics simulation. However, data in Table 9 

and Table 10 do not seem to indicate that such an 

effect exists, the confidence interval for PET 

being comparable with that of other polymers.  

Terminal ends of the polymer chains 

could also influence the dynamics and thus, the 

confidence interval determined for kH. An 

infinite molecular weight chain of PET is 

constructed by building many times the polymer 

unit cell for finite chains. When terminal groups 

are located close to each other, they are 

connected. From 200 ps of MD at 300K, oxygen 

Henry’s constant is found to be (5.8<µ≤8.0)*1e-

4 molecules*cell-1*kPa-1, with a confidence 

interval for kH about 40%, comparable with that 

in Table 9.  

Although a detailed study of the 

temperature dependence of Henry’s constant of 

nitrogen and carbon dioxide was performed for 

the case of poly(propylene), the effect of high 

temperatures (1000 K) on the confidence interval 

with which Henry’s constant is determined was 

tested once more. A 200 ps molecular dynamics 

trajectory for the PET sample is generated at 

1000 K. Oxygen Henry’s constant is determined 

as (5.9<µ≤8.5)*1e-6 molecules*cell-1*kPa-1. 

Compared to the confidence interval at 300K, 

(6.2<µ≤9.2)*1e-4 molecules*cell-1*kPa-1, a 

decrease by two orders of magnitude in the 

average value of Henry’s constant is observed 
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but the width of the confidence interval remains 

comparable (~45%).  

As polymeric systems might require 

longer equilibration periods, the effect of a 

longer MD simulation (400 ps instead of 200 ps 

for the PET sample) on the confidence interval 

calculated for Henry’s constant is investigated 

next. The confidence interval for oxygen 

solubility in PET calculated for the 20-400 ps 

interval from the 400 ps MD run (n=76) is 

(5.6<µ≤6.5)*1e-4 molecules*cell-1*kPa-1. This 

value is significantly reduced from ~60% to 

~20% and suggests that for more accurate 

determinations the polymer samples should be 

equilibrated for longer time periods.  

Experimental investigations show that -

especially for highly soluble and dense gases- the 

quantity of dissolved gas can be appreciable and 

usually leads to polymer swelling. Naturally in 

such cases, a correlation between Henry’s 

constant and the total and/or occupiable volume4 

characteristic for the modeled polymer samples 

could exist. Henry’s constants calculated via the 

Henry’s constant ensemble are plot as a function 

of the occupiable volume for the five polymer 

samples. However, for none of the polymers a 

clear correlation could be established (data not 

shown). Similar correlations between the 

occupiable volume and Henry’s constant values 

were sought for the minimized samples 

generated with the CED procedure (Figure 18). 

PP, PVDC and PCTFE (R2 values of 0.5, 0.5 and 

0.2) show good correlations while PET and 

PVOH do not (R2 values of 0.7 and 0.6).  

An additional test was set where PET 

samples (10 chains with degree of 

polymerization 5) are built with the same total 

volume of the unit cell (VUC=1311 Å3) using the 

Amorphous Builder module of Cerius2 (Accelrys 

Inc.). The “void” distribution of the polymer 

sample is controlled by including during the 

building process: 

1. no oxygen molecules; 

2. one cluster containing ten oxygen 

molecules; 

3. two clusters, each with five oxygen 

molecules; 

                                                 
4 The occupiable volume is the fraction of the total volume 
of the unit cell that can be occupied by a probe of radius Rp 
(includes isolated voids in the polymer matrix). A probe 
radius of 1.2 Å was used in the present study. 

Figure 18. Correlation between Henry’s constant values for 
oxygen and the occupiable volume in the polymer matrix 
for the minimized samples generated with the anneal 
dynamics procedure. The probe radius in the calculation of 
occupiable volume was 1.2Å. R2 values are 0.2 for PCTFE, 
0.5 for PP and PVDC, 0.6 for PVOH and 0.7 for PET. 
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4. ten clusters each containing one oxygen 

molecule. 

Prior to calculate Henry’s constant, each of the 

above samples is minimized and the oxygen 

molecules removed. Henry’s constant values are 

summarized in Table 12. 

 

Table 12. Henry’s constant for oxygen in PET with 
“controlled” occupiable volumes, Voc, and void 
distributions for the same total volume of the unit cell, 
VUC=1311 Å3. The surface accessible area of the unit 
cell, SC, and the surface area corresponding to the 
occupiable volume, Soc, are also calculated  

Sample SC Voc Soc kH 

 Å2 Å3 Å2 molec/cell/kPa 

No O2 1367 293 370 5.5e-3 

1x10 O2 2032 398 507 4.5e-3 

2x5 O2 1975 472 630 4.5e-3 

10x1 O2 1745 354 431 2.7e-2 

 

When no oxygen molecules are included in the 

amorphous building procedure (case 1) the cell 

will contain the smallest amount of occupiable 

volume. Henry’s constant also has the smallest 

value. Between the case of a single large void 

(case 2, kH=2.7*e-2 molecules/cell/kPa) and ten 

small isolated voids (case 3, kH=4.5*e-3 

molecules/cell/kPa) the occupiable volume (and 

the corresponding surface area) is decreased by 

11% but Henry’s constant is larger by a factor of 

6, contrary to what one might expect if a 

correlation would exist. Between one void with 

ten oxygen molecules (case 2) and two voids 

each containing five oxygen molecules, the 

occupiable volume is increased by ~19%. 

However, Henry’s constant calculation in these 

two cases gives the same value.  

Henry’s constant value peaks however 

for case 4 where ten small “voids” are included 

in the structure, although the corresponding 

occupiable volume is not the largest.  

 
Table 13. Henry’s constant confidence intervals for 
oxygen in PET for two sample sizes, n=10 and n=100 
and from trajectory averaging. 

n  kH  (molec/cell/kPa) 
10 (0.1<µ≤4.8)*1e-4 
100 (4.5<µ≤6.4)*1e-4 
Trajectory (6.2<µ≤9.2)*1e-4 

 

To test if ensemble average is more 

rigorous than trajectory (time) average, Henry’s 

constant confidence levels are calculated for the 

minimized samples (n=10) generated with the 

CED procedure (Table 13). However it turns out 

that the confidence intervals determined as 

ensemble average are much larger than those 

obtained from average trajectory calculations 

(Table 9-10). This is certainly the case for 

calculations performed on small sets of polymer 

samples (n=10). The calculations are also 

repeated for the larger set n=100 generated for 

PET. The three calculated confidence intervals 

differ significantly although a slight overlap 

exists.  

Most probably, by generating a larger set 

of samples for each polymer and determine 

Henry’s constant for the minimized structures or 

alternatively calculate solubility via the Henry’s 
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constant ensemble method for longer 

equilibrated polymers would lead to a more 

accurate value. 

 

Table 14. Henry’s constant, kH, for oxygen in PET for 
frames with average, minimum, and maximum volume 
as selected from the trajectory or scaled (using 
fractional coordinates) from the initial frame at t=0. 

V Vocc kH Observations 
Å3 Å3 molec/cell/kPa  

4882.2 43.1 6.3e-6 Frame at190 ps 
“ 79.9 3.4e-4 Frame at t=0, scaled 
“ 65.9 7.6e-5 Frame at t=0, scaled 

and minimized 
4729.2 23.9 1.7e-7 Frame at129 ps 
4724.6 68.0 3.7e-4 Frame at t=0, scaled 
4724.6 47.2 1.6e-5 Frame at t=0, scaled 

and minimized 
5187.5 130.6 3.1e-4 Frame at 2 ps 
5182.2 110.4 3.1e-4 Frame at t=0, scaled 
5182.2 118.1 3.1e-4 Frame at t=0, scaled 

and minimized 
 

During MD a certain region of the phase 

space is explored, thus favorable and unfavorable 

polymer conformations –defined from the point 

of view of the interactions with the solute- are 

sampled. To study the effect of such 

conformational changes on Henry’s constants, 

frames are extracted from the PET trajectory at 

300 K corresponding to average (4882.2±74.9 

Å3), minimum (4724.3 Å3) and maximum 

(5182.1 Å3) volumes. Additionally, the volume 

of the initial frame (t=0) is successively changed 

(using fractional coordinates) to the average, 

minimum and maximum dynamics volume. The 

volume-scaled initial frames are also energy 

minimized. Henry’s constant is then calculated 

for each of these frames in the three listed cases. 

For approximately the same average, 

minimum and maximum values of the unit cell 

volume, initial polymer conformations as 

generated from the CED procedure or as 

generated during molecular dynamics, result in 

significantly different values of Henry’s constant 

(Table 14). 

For example, by scaling the volume of the 

initial time frame to the average value, Henry’s 

constant is a factor of ~5 smaller if the structure 

is also energy minimized. 

Henry’s constant calculated for the trajectory 

frame that has a volume closest to the average 

dynamics volume (frame at 190 ps) is another 

factor of ~13 smaller. Similarly, when the initial 

frame volume is scaled to the minimum 

dynamics value, Henry’s constant increases only 

to decrease again after the structure is energy 

minimized. 

 

6 Summary 
 

The present study describes a combined 

molecular dynamics and Monte Carlo 

methodology to estimate solubility properties of 

polymeric membranes (PP, PET, PVDC, PVOH, 

PCTFE) with respect to a variety of solutes 

(nitrogen, carbon dioxide, oxygen and water). 

Solubility (Henry’s constant) is only one 

property that defines the overall permeability of 

a polymeric membrane. However, it seems that 

solubility for water is more important than for 
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oxygen in defining permeability, probably due to 

its hydrogen binding potential and electrostatic 

interactions.  

Although this study uses samples of 

amorphous polymers with low molecular 

weights and relative short molecular dynamics 

runs (200 ps) compared to the time scale at 

which the whole process of permeation 

(diffusion and sorption) occurs it provides a 

useful and relative quick tool to better 

understand the process of gas solubility in 

polymeric matrices. The correct trend is 

predicted for the variation of Henry’s constant 

with temperature of nitrogen and carbon dioxide 

in poly(propylene), for temperatures below and 

above the polymer’s melting point. Especially 

for noble gases the present method correctly 

predicted the temperature of minimal solubility, 

close to the glass transition temperature of the 

polymer.  

For statistical accuracy, a confidence interval 

rather than an average value is calculated for 

Henry’s constant, kH. Also, to best capture 

structural variations characteristic to each 

polymer, a set of ten samples was generated. 

Ideally, the larger the sample set, the higher the 

accuracy of the calculated properties. Although 

the ten-sample set seems to be biased towards 

configurations with higher energies, it may still 

be considered representative. A good criterion to 

choose a sample from the generated set is on 

basis of average density and CED.  

The relatively large intervals determined for 

Henry’s constants are the result of a combination 

of various factors: sample equilibration and 

dynamics, total occupiable volume, size of voids 

and distribution, interaction energy solute-

polymer matrix determined by “favorable” or 

“non-favorable” exposed surface of the polymer 

chains. Longer equilibrations of the polymer 

matrix and also energy minimization of the 

structure before calculating Henry’s constant 

would certainly benefit the accuracy. However, 

these wide intervals have to be regarded as a 

characteristic of each polymer, directly related to 

its structural properties and the nature of its 

interactions with the solute.  
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Appendix 
 
This section summarizes the Rotational 
Isomeric State (RIS) tables and the charges 
on the five polymer samples (PET, PP, 
PCTFE, PVDC and PVOH) selected for the 
present solubility study. The RIS table 
contains information on the conditional 
probability of key dihedral angles in the 
polymer chain determined by separately 
minimizing the energy of the representative 
torsions, with coupling where applicable. 
The charges on the polymers are calculated 
from electrostatic potential fits (ESP) to 
Hartree Fock (6-31G** basis set) quantum 
charges using the Jaguar program 
(Schrödinger LLC). The atomic charges for 
the monomer structures are calculated first 
after replacing the head and tail atoms 
(hydrogens) by methyl groups (CH3) to 
avoid terminal edge effects on the charges. 
A macro was then used to assign the Jaguar 
calculated quantum charges back to the 
monomer after first replacing the terminal 
methyl groups with hydrogen atoms. The 
residual charge was redistributed over the 
entire monomer, except for the terminal 
hydrogen atoms that remained uncharged. 
The terminal hydrogens are used as dummy 
atoms for the monomer as they are deleted 
when a polymer chain is generated. The 
monomer configuration with ESP charges 
was used to build a trimer and to determine 
the main representative torsions of the PET 
polymer. 
 
1. Polyethylene terephtalate (PET) 
 

The structure of the PET monomer 
(Figure 2) was loaded from the Cerius2 
(Accelrys Inc.) database. By including only 
main backbone atoms (side chains are 
easily realigned by dynamics), three 
representative torsions were selected. The 
torsions were denoted as t1 (all 

RCCROC _3__3_ −−−  type), t2 (all 
3_3__3_ CCROC −−−  type) and t3 

(all ROCCRO _3_3__ −−−  type), 
respectively. To optimize the polymer 
geometry by calculating the torsional 
potentials and the Rotation Isomeric 
Structure (RIS) table, torsion t1 was 
minimized first. Torsions t2 and t3 were 
then minimized after coupling with t1, and 
t2, respectively.  

For torsion t1, the energy variation as a 
function of the total number of 
conformations of the trimer (Figure 19) 
indicates the presence of three local minima 
of the energy, each corresponding to a 
representative state of the polymer. Table 
15 summarizes the angle values and their 
tolerances that correspond to these local 
minima in the energy.  
 Table 15. Angles and energies characterizing the 
three representative t1 states of PET. 

Angle (deg) Tolerance 
(deg) 

Energy 
(kcal mol-1) 

45.0 10.0 188.2 
185.0 10.0 171.8 
290.0 10.0 182.1 

Figure 19. Energy (kcal/mol) as function of
the total number of conformation for torsion
t1 (all atoms with C_3-O_R-C_3-C_R type) of
PET. 
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For the analysis of the coupled t1-t2 and 

t2-t3 torsions, density contours are analyzed 
(Figure 20). The dark blue regions 
correspond to a low probability (low 
energy) of correlation angles. The degree of 
correlation increases with color 
brightening. Figure 20 indicates the 
existence of two local minima for the t2 
torsion (Table 16). The presence of the 
double bonded oxygen in the close vicinity 
of the resonant carbon makes it difficult for 
the structure to bend or flex. It seems that 
the optimal conformation occurs when the 
double bonded oxygen and the carbon-
carbon resonant bond remain in the same 
plane. 
Table 16. Representative states for coupled t1-t2 
torsions. 

T1\T2 
deg 

∆t2 
deg 

29.0 14.3 

74.9 25.0 161.0 155.0 
275.0 30.0 155.0 151.6 

 
Compared to the t1-t2 coupling, the t2-t3 
coupled torsion has a higher number of 
states (Table 17) most probably because 
none of the two component torsions 

contains a resonant carbon that would 
restrain the structural freedom. 
The RIS table was built by compiling 
Tables 15-17 and thus contains all the key 
information characterizing the 
representative states of equilibrium (or 
local equilibrium) of the polymer. For all 
three investigated cases (t1, t1-t2, t2-t3) the 
given tolerances for the angles actually 
represent the range of variation that 
corresponds to a change in energy of 1%.  
 
Table 17. Representative states for coupled t2-t3 
torsions. 

 
T3/T2 

deg 

∆t3 
deg 

207.0 248.0 264.0 

 34.0 20.0 200.0 200.0 150.3 
 66.0 10.0 149.5 149.3 200.0 
294.0 10.0 200.0 150.6 200.0 
309.0  5.0 150.8 200.0 200.0 

 
The RIS table is used as input for the CED 
procedure (section 2, [13]) in which 
amorphous samples of a three dimensional 
periodic unit cell of the polymer are 
constructed. 

 The charges for the PET monomer 
and trimer are summarized in (Table 18).  

 

Figure 20. Density contours for coupled torsions t1-t2 and t2-t3 in PET. Dark blue regions correspond to 
low correlated torsions (low energies) while the correlation degree increases the brighter the color. 
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Table 18. Atomic charges of the PET monomer. 

Atom Charge in 
monomer 

Charge in 
trimer (ESP) 

C1 0.65606 0.66205 
C2 -0.12530 -0.11931 
H3 0.13972 0.14571 
C4 -0.15101 -0.14502 
H5 0.13896 0.14495 
C6 -0.08504 -0.07905 
C7 -0.10243 -0.09644 
H8 0.14725 0.15324 
C9 -0.11571 -0.10972 
H10 0.13693 0.14292 
C11 -0.09128 -0.08529 
O12 -0.55509 -0.54909 
C13 0.77351 0.77950 
O14 -0.46129 -0.45529 
O16 -0.53615 -0.53016 
C17 0.08063 0.08662 
H18 0.09454 0.10053 
H19 0.07788 0.08387 
C20 0.21222 0.21821 
H21 0.02388 0.02987 
H22 0.04991 0.05590 
O23 -0.44006 -0.43407 
  
 
2. Polyvinylidene chloride (PVDC) and 
polyvinyl alcohol (PVOH) 
 

Both polymers, PVDC and PVOH, 
have a representative torsion, t1, defined by 
the backbone carbon atoms (C-C-C-C). The 
torsion energy distribution was determined 
for the dimer as it contains the minimum 
number of monomers for which this torsion 
is defined. The angles and energetic 
minima for PVDC and PVOH are 
summarized in Table 19. 

The atomic charges for PVDC and 
PVOH are shown in Figure 21. 

Table 19. Angles and energies characterizing the 
three representative t1 states of PVDC. 

Polymer Angle 
(deg) 

Tolerance 
(deg) 

Energy 
(kcal mol-1) 

PVDC 50.0 10.0 16.101 
 85.0 10.0 18.918 
 310.0 10.0 16.117 

PVOH 50.0 20.0 1.054 
 175.0 10.0 0.000 
 260.0 12.0 4.088 
 290.0 10.0 4.720 

  
 
3. Polypropylene (PP) 
 
The torsional potential (Figure 22) was 
determined via a grid scan (from –1800 to 
1750 in steps of 5 degrees) on the middle 
torsion of the polypropylene pentamer and 
indicates a relatively rotatable bond. The 
energy difference between the lowest and 
highest energy conformers is about 10 
kcal/mol.  

Figure 21. Atomic charges on PVDC (top) and
PVOH (bottom) from quantum mechanics.
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From this potential plot, an RIS table 
(Table 20) was created and used to prepare 
the CED samples (syndiotactic PP 20-mer). 
Table 20. Angles and energies characterizing the 
three representative t1 states of PP. 

Angle (deg) Tolerance 
(deg) 

Energy 
(kcal mol-1) 

45.0 10.0 1.000 
240.0 2.0 3.000 
320.0 4.0 0.000 

 
The atomic charges for the PP system were 
calculated using quantum mechanics (Table 
21), then averaged out to create a neutral 
monomer that was repeated to generate the 
polypropylene polymer.  
 
Table 21. Atomic charges of the PP monomer. 

Atom Charge in 
Monomer 

Charge in 
Trimer 

C (tail) -0.5576 -0.55904 
H 0.1304 0.12900 
H 0.1035 0.10204 
C (head) 0.5393 0.53785 
H -0.0549 -0.05636 
C (methyl group) -0.4961 -0.49754 
H 0.1219 0.12044 
H 0.1033 0.10192 
H 0.1103 0.10890 

 

 
4. Polychlorotrifluoroethylene (PCTFE) 
 

PCTFE has a chiral center at the carbon 
bonded to both a chlorine and a fluorine 
atom. Because of this chiral center, tacticity 
had to be taken into consideration. 
Syndiotactic polymers were used for all 
calculations. 

This polymer has two torsional angles 
that define it, and because there are two 
torsions, a coupled RIS table was 
generated. The dreidii-exp6-direct.par force 
field was used for the conformer search, 
done through a grid scan. Two torsions 
were varied, which resulted in 5,184 
conformers (scanning angles from –180 to 
175 degrees in 5 degree intervals). The 
most central torsion was used for both 
dihedrals. The corresponding 
Ramachandran plot is shown in Figure 23.  

The RIS table for coupled torsions is 
slightly more complicated. A simple, 
uncoupled RIS energy table was generated 
for the first torsion (Table 22) and then a 
second table was coupled to the first (Table 
23). The atomic charges of the PCTFE 
monomer and trimer are summarized in 
Table 24. 

Figure 23. Torsional potential for the main 
torsion of PCTFE

Figure 22. Torsional potential for the main torsion
of PP.  



 32

 
Table 22. Angles and energies characterizing the 
three representative t1 states of PCTFE. 

Angle (deg) Tolerance 
(deg) 

Energy 
(kcal mol-1) 

0.0 5.0 4.000 
120.0 5.0 4.000 
230.0 10.0 0.000 

 
Table 23. Representative states for coupled t1-t2 
torsions of PCTFE. 

T1\T2 
deg 

∆t2 
deg 

0.0 120.0 230.0 

0.0 15.0 4.000 4.000 0.000 
130.0 3.0 4.500 4.500 0.500 
232.0 5.0 4.750 4.750 0.750 

 
Table 24. Atomic charges for the PCTFE 
monomer. 

Atom Charge in 
Monomer 

Charge in 
Trimer 

C (chiral center; 
attached to head) 

-0.1887 -0.18360 

Cl  0.0776 0.08271 
F (attached to chiral 
center) 

-0.0215 -0.01644 

C (attached to tail) 0.4128 0.41789 
F (labeled F13) -0.1413 -0.13623 
F (labeled F14) -0.1390 -0.13392 

 


	Introduction
	Polymer models
	Methodology to calculate solubility constants
	Validation
	Compressibility and thermal expansion coefficients
	Mass cell pre-factor coefficient
	Temperature dependence of kH

	Results and discussion
	Summary
	References
	Appendix

	Charge in Monomer
	Charge in Trimer

